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ABSTRACT: The role of molecular weight of a chain in the chain breakdown in diluted
solution at a constant concentration of chain molecules and constant temperature is
discussed theoretically using the methods of the theory of the activated complex and
kinetics of cooperative processes. The reaction starts at the certain molecular weight of the
chain. The chain breakdown is the flat increasing function of the chain molecular weight.
This function has a limit when chain molecular weight approaches infinity. Such depen-
dence is explained by the increase of flexibility (following two theories) and increase of extra
entropy of molecules of different sizes (following kinetics of cooperative processes. Unequal
reactivity of chemically identical active centers links to the dependence of chain flexibility
on the location of the more flexible part (place of reaction) of the chain. © 2002 Wiley
Periodicals, Inc. J Appl Polym Sci 84: 18101817, 2002; DOI 10.1002/app.10356
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INTRODUCTION

It was found in studying degradation of chain
molecules that under definite conditions reaction
begins at certain value of molecular weight. This
weight is defined by the strength of chemical
bonds.' Thermodynamic probability of initiation
of any process, for example, degradation is de-
fined by the equality of thermodynamic potentials
of the initial and final systems. Particularly, it is
valid for Gibbs free energy?®

AG:G}C—GL:O

where AG is the Gibbs free energy variation
throughout the process, G, is the free energy of
formation of a solution after degradation (final
state), and G, is the free energy of the formation
of a solution prior to degradation (initial state).
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Gibbs free energy (or free energy) is used to
describe the process carrying out at constant tem-
perature (7T') and pressure.

A number of examples show that degradation
of polymers (infinitely long chains with Gaussian
distribution between the end points) can be de-
scribed by rate constants of elemental chemical
reactions. These constants do not depend on mo-
lecular weight if the degradation mechanism re-
mains unchanged. Because the molecular weight
of a chain reduces continuously throughout the
process, it is clear that starting from a certain
chain length, the dependence of rate constant on
the chain length becomes very weak. Therefore,
the dependence of rate constants of degradation
on molecular weight is normally observed at mod-
erate values of molecular weight (olygomers).?

In olygomers, reactivity should be referred to a
molecule as a whole (system) (more correctly to
the molecular active center), whereas in polymers
reactivity is referred to specific reactivity center
(monomer unit). Any chemical reaction of oly-
gomers represents chemico-mechanical process,



ROLE OF CHAIN LENGTH IN DEGRADATION PROCESS 1811

i.e., the process, where free energy is altered by
the change of the system as a whole, not only by
chemical processes.? If we consider the chain mol-
ecule as a system, its change presumes variation
of the chain length and/or local rigidity. Break-
down of the chain molecule leads to an increase of
the number of molecules and a decrease of their
length, thus altering the dependence of the sys-
tem free energy on the molecular length at a
constant concentration of molecules.

For this reason, olygomer chains are character-
ized by the dependence of the rate constant of the
process also on the location of the reaction. If
chain breakdown does not occur, the length can be
altered only by the ratio of conformers.* A varia-
tion of the conformer ratio, which can be observed
in olygomers due to the variation of molecular
weight, may alter the effective rate constant of
the process due to the different reactivity of con-
formers. However, we do not touch this problem
in the current work.

The scope of this work is the study of the de-
pendence of the rate of chain breakdown on the
chain length. Because breakdown of a relatively
long chain (chain length is two times longer than
the length of thermally stable chain) can take
place several times, we consider the initial rate of
degradation of chain molecules of different
lengths.

Suppose that we have diluted solution of chain
molecules (i.e., we can neglect interaction be-
tween chain molecules) at constant conditions
(temperature, solvent). We assume that starting
from a definite chain length, chemical reaction is
carried out, which follows, for instance, the
schemes

k
~U~ — ~UMeX,, ; + X~

|
MeX,,

NCHQ_CHZ_CHz’\"ﬁ CH3_ + CHZZCH2~

The first scheme corresponds of the degrada-
tion of the complexes of polyethers (e.g., poly eth-
yleneoxide) with metals, for example, AIR;.® In
this case U = O (atom of oxygen in the chain).

Solvent consists of one kind of nonassociated
molecules. Other chemical processes do not take
place in the solution. There is no molecular
weight distribution in chain molecules, i.e., all
chains have the same length. Because we con-
sider only the effect of chain on the process, we

assume that all chains have a regular structure
and consist of the same conformers, i.e., chain
length L is proportional to the number of mono-
mer units n and unit length [ (L = nl).

Kinetics of this process can be described in
terms of the theory of activated complexes (formal
kinetics)®>® or in terms of kinetics of cooperative
processes.” Let us assume that system equilib-
rium can be reached faster at given composition of
solution, than degradation process carries out.
Then, following formal kinetics we can write
equation of reaction rate V in standard form of
first order reaction®

V = —dC/dt — kC

where C is current concentration of degrading
chain molecules, which is equal:

C = C, exp(—kt) (1)

Here, C, is initial concentration of chain mol-
ecules, ¢ is time.

The constant rate of reaction is defined by free
energies of formation of initial chain and acti-
vated complex

k = xkT/h exp(—AG*/RT)
= xET/h exp(—AS*/RT) exp(—AH*/RT)

where AG", AS™, and AH" are free energy, en-
tropy, and enthalpy of activation, respectively,
which are equal to the difference of corresponding
functions in the activated complex and initial
state, as, for example:

AG"'=G" -G

where ykT is transmission coefficient, and 2 and
h are Boltzman and Plank constants.

Free energy of the formation of the diluted
solution of free molecules prior to degradation
(initial state) can be deduced assuming additive
character of components?!

Gi = Gst+ Gs+ Gid+ AGex+ Gb + Gl + AGss

where G,, is the free energy of the formation of
chain molecules in the stretched state, G, is the
free energy of solvent formation, G,; is the free
energy of the ideal mixture, AG,, is the extra free
energy of the mixture of molecules of different
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sizes (chain and solvent), G, is the free energy of
the chain bend in the solution, G; is the free
energy of the local interaction between the chain
and solvent, AG,; is the free energy of the inter-
action between the solvent molecules during their
transport from the bulk to the chain.

If the activated complex if formed by deforma-
tion of the breaking bond, then the free energy of
the formation of the solution of chains containing
the activated complex consists of the same com-
ponents of free energy of the formation of solution
(final state).

Thus, variation of free energy due to the for-
mation of the activated complex is equal to

AG; = AG,, + AAG,, + AG, + AG, + AAG,,

where the symbol A characterizes the variation of
the corresponding component of free energy,
equal to the difference between components of the
final and initial state.

Because the number of molecules remains the
same during the transition to the activated com-
plex AG;,; = 0, the value (AG,, + AG, + AG,,)
depends weakly on the chain length (if molecules
are relatively large AG,, approaches zero) be-
cause geometry of an initial part if the reacting
chain and activated complex is defined only by
local interactions. The amount of solvent mole-
cules that surround the initial chain and acti-
vated complex is approximately the same. There-
fore, AAG,, decreases with an increase of the
polymer chain approaching zero. Taking the
above into account we can write

AGL' = AGb + AGli

where AG/; is the variation of the free energy due
to local interactions

k= kli eXp(—AGb/RT)

i.e., the polymer specifics become obvious due to
the changes in the chain bend.

Because free energy of the bend is defined
mainly by a change of entropy, the dependence of
the rate constant of the degradation on the chain
length is due to the change of entropy. This is
similar to other processes with participation of
the chain molecules.

The dependence of free energy of the chain
bend on the chain length links to the ratio R%/R2
varying from L%RZ (S,/n = 0, where S, is the

Sb/n r

R2/R 2
o

Figure 1 Dependence of the entropy of the chain
bend referred to the monomer unit S,/n on the ratio
between average squares of the distance between chain
ends in solution and the isolated state R*/R2.

entropy of the chain bend) to 1 (S,/n = R) (Fig.
1). Because the precise mathematical link be-
tween the above ratio and entropy of the bend is
not known, we can use the empirical equation

S,/n = a[1 — B exp(—R¥R?)]

where « and B are defined by initial conditions
a=RA[1 - exp(L’ — R)/R]}
B = exp(L*/R?)

The empirical equation is chosen for the follow-
ing reasons: (a) the function has a limit, but the
dependence is not linear; (b) function is continu-
ous and flat; and (c) because R? is described by
the two constant parameters (a/RT and L), it was
presumed that the function is also characterized
by two parameters. .

RZ can be found by standard methods,* and R®
can be calculated using a model or measured ex-
perimentally. Here we use the Landau-Lifshitz
model,® where R? is characterized by the chain
length L and local rigidity of isolated chain a. R?
can be calculated on the basis of experimental
data on viscosity.

For infinitely long chains (polymers) S/n = R
and R2 = 2 La/RT, whereas for short chains R?
approaches L2.

In diluted solutions local rigidity of the isolated
chain must be substituted by apparent local rigid-
ity a;, which satisfies the following equation®
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a, = 40a?(40a — L%p)

Here, p is parameter of chain—solvent interac-
tion. Apparent local rigidity of a chain increases
with an increase of its length approaching infinity
at Ly, = (40a/p)Y2. It is one of the reasons of the
existence of thermally stable chain lengths in the
solution. As a,; approaches infinity, the chain is
being stretched, and the chain bend is equal to
zero at Ly;,,. Because R? ~ L? for short chains,
dependence of the chain bend entropy on chain
length has extreme character (Fig. 2). The ex-
treme value can be calculated finding maximal
value of R?/R? and substituting a by a; in the
expression for R2.®

For chains containing an activated complex in
a certain place of the chain (say in the middle),
the dependence of the bend entropy is similar to
that on the chain length of initial molecules. Due
to less local rigidity a;, less local interaction of
solvent with that part of the chain that contains
an activated complex and longer chain length, the
bend entropy will have a larger value, but this
value is less than the bend entropy of the isolated
chain (Fig. 2).

Hence, the integral case rate constant of the
reaction is larger than the rate constant of the
degradation of chains that have no bend. Appar-
ently, degradation begins when free energy of the
bend has an extreme at a certain value of the
chain length. If it is valid, the dependence of the

S, /n

Figure 2 Dependence of the entropy of the chain
bend referred to the monomer unit S,/n on chain
length n; n,,,. is the chain length corresponding to the
maximum value of S,/n; ny;,, is the chain length cor-
responding to infinite local rigidity; 1—isolated chain,
2—chain containing activated complex, 3—chain in
solution.

R2

0 L2 L

Figure 3 Dependence of the average squares of the
distance between chain ends R? on location of one
flexible or rigid part of constant length in a chain, L is
the chain length: 1—local rigidity is less than local
rigidity of the main chain; 2—local rigidity is more than
local rigidity of the main chain.

rate constant on the chain length approaches a
constant value observed in the experiment.

Note that an increase of the chain length pro-
vokes association of molecules and an increase of
the time required to reach equilibrium macromo-
lecular shape in the initial state and in the acti-
vated complex. This makes experimental study of
the dependence of the rate of degradation on
chain length more difficult.

The values of R? and S are defined by location
of rigid and flexible units if the number of these
units is equal (Fig. 3). Therefore, for olygomer
compounds the reaction, most probably, takes
place in the middle of the chain.? If the chain has
only one break point, the reaction of degradation
takes place in the middle of the chain only.

As the length of the degrading chain increases,
the degradation process involves parts located far
from the middle. If formal kinetics is valid to
describing degradation, then variation of the
bend and local rigidity can be found, which are
due to the deformation of a chemical bond. It can
be done by estimating distribution of the products
of reaction. The deformation can be calculated
assuming a certain structure of the activated
complex. For example, here we assume the same
angles between bonds. It should also be taken into
account that the apparent rate constant is an
average of local rate constants.

With a further increase of the chain length (in
polymers) nearly all chain parts will degrade with
equal probability because reactivity of the end
groups can be neglected. Thus, reactivity does not
depend on chain length, and the rate constant of
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degradation can be estimated by relating the ef-
fective rate of process to the overall concentration
of active centers.”

If degradation follows fluctuation of solvent
molecules from the place of reaction to the chain,
the most probable place of fluctuation is the mid-
dle of the olygomer chain (fluctuation results in p
and a; decrease). The probability of reaction is the
same throughout the chain. The activated com-
plex is formed due to the deformation of the de-
grading bond in the place of fluctuation of the
solvent. For this reason the kinetic of the process
is similar to the above; however, the initial con-
centration C; is less than C,. Initial concentration
is defined by the probability of the fluctuation
process.

Because we consider the reaction in the diluted
solution of the olygomer and polymer chains (co-
operative systems), the equation describing coop-
erative chemical reactions’ can be used to de-
scribe the kinetics of the irreversible first-order
reaction. In this case the equation of the rate of
reaction is substituted by the equation of the ac-
celeration of the reaction

dG/aC = M d*C/dt* = fICd*C/d¢* (2)

where M, is the parameter characterizing the
chemical reaction, and d%2C/dt? is the acceleration
of the reaction, f/C = M,

dG/9C represents the chemical potential at
constant temperature and pressure, and rela-
tively large concentrations of the reacting com-
pounds.>!® This parameter describes the mol
variation of free energy in a system. Use of the
derivative 9G/9C presumes the existence of
chemical potentials in systems, where chemical
processes take place, not only at equilibrium.
Taking into account the assumption of an addi-
tive character of free energy components, we can
estimate the effect of any AG component on the
process.

The barrier of chemical reaction (2) and mol
variation of free energy of reaction defines the f
value. This value weakly depends on concentra-
tion: f = (G, — G,)/k* where k is defined by
movement of an intermediate particle through
the reaction barrier.!! In fact, f characterizes ki-
netic probability of the process that is defined by
movement of an intermediate particle along the
reaction barrier. Application of thermodynamic
potentials (e.g., dG/dC) as a driving force of the
process enables application of variation principles
for identification of the reaction mechanism.

Condensed phases are characterized by a weak
local interaction chain-solvent (energy of local
interaction is less than RT). In this case, reaction
starts, apparently, from fluctuation of the solvent
molecule at the local place of the chain.” Due to
fluctuation, energetic nonequilibrium is observed,
which leads to the reaction. Apparently, the ac-
tive particle goes up along the reaction barrier.
Because the probability of fluctuation is propor-
tional to exp(G,/RT) (G, is the free energy of the
formation of local intermolecular bond chain—sol-
vent), the expression for the concentration of ac-
tive centers C, is similar to that derived from
consideration of formal kinetics.

C.= C, exp(G/RT) = K,/C,

It is clear that larger G, value results in a
bigger difference between energy of the active
centers of solvent molecules. On the other hand, it
leads to smaller C, values. As pointed out above,
fluctuation has the same probability along the
chain molecule in the polymers, and has the vari-
able probability in olygomers. The start of the
reaction in the place of fluctuation is further con-
firmed by a volume increase during the degrada-
tion process.

Strong local interaction between the solvent
and chain (interaction energy is larger than RT)
probably results in a new way for the reaction to
starting from the solvent fluctuation. Then acti-
vated particles move along reaction coordinates
deforming the chemical bond. As the reaction bar-
rier is overcome, chain molecules take a desirable
shape. To simplify study of the role of the chain
length in the degradation process it is assumed
that diffusion is faster than the chemical reaction.
The variation of the chain shape in the solution,
which is characterized by variation of R?, links to
the variation of a; with the chain length. If deg-
radation results in the molecules of the same
shape, the rate of this process is very low, and it
reduces with an increase of the chain length.

Using variation methods,” a conclusion can be
drawn about the following successive stages of the
degradation process: fluctuation of solvent, chem-
ical degradation, and changes of the shape of
forming chains. Applying the same principles the
part of the molecules can be estimated, which can
be formed out of the basic mechanism. An evalu-
ation showed the low probability of the following
reaction: chain fluctuation to the desirable shape
with a subsequent chain reaction.
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0

0 n

Figure 4 Probability of fluctuation of the molecule of
the solvent P in the middle of the chain as it depends on
the chain length n: 1—equilibrium chain shape can be
reached during the fluctuation period; 2—equilibrium
chain shape cannot be reached during fluctuation pe-
riod.

The final stage of the process starts after chain
breakdown only, because if the chain is not bro-
ken, the place of breakdown has more effect on
the chain flexibility than the end group forming.
A very long chain may be characterized by non-
equilibrium. It is clear that application of initial
state thermodynamics requires analysis of the
equilibrium shape of initial chains prior to reac-
tion. This is because a rate of chain formation
increases with the length of initial chains. The
stage of formation of equilibrium shape can be
observed experimentally.'? However, in this case,
the experimental techniques can be applied (e.g.,
calorimetry or molecular weight distribution),
which enable skipping the final stage.

Dependence of fluctuation on the chain length
can be better viewed for nondegrading chains
(Fig. 4). In this case, the most variable parameter
is G, because concentration of the molecules re-
mains unchanged, and variation of a number of
contacts chain—solvent is minor. The specific
character of solvent fluctuation links, basically, to
the “chain effect.”® The dependence of free energy
of fluctuation on the chain length has an extreme
in a definite place of the chain (e.g., in the middle
of the chain).

If formation of the equilibrium shape is a
slower process than degradation (the most realis-
tic case), free energy is an increasing function of
the chain length. This function has a limit. Max-
imal increase of the free energy of bending is
observed if there is no component of free energy,
which links to the chain bending at equilibrium.

All intermediate cases are also possible. The far
chain is from equilibrium, the more is free energy
gain due to fluctuation of solvent molecules. All
the above relates to the fluctuation of solvent
molecules and chain bending. It is also applicable
if kinetics of degradation is considered in terms of
formal kinetics.

To estimate kinetics of the process one should
find free energy of the formation of the final state,
and then the driving force of the process. In con-
trast to definition of the formal kinetics, here the
final state is solution forming, as the result of
degradation. The free energy of its formation G is
equal to

G;=Gi+ G, + G, + Gjy + AG,
+ G, + G+ AGL

Here, the symbol “'” refers to free energies of
the final state.

To simplify consideration we assume that
breakdown has taken place in the middle of the
chain (all chain molecules are of the same size).
Furthermore, all components depending on chain
length are average values.

Values of G; and AG], are different from G,
and AG,, due to the different bends of the initial
and final chain and a different number of chain—
solvent contacts. The latter is more than the num-
ber of contacts of initial chains because of a dif-
ferent free energy of fluctuation and additional
contacts of solvent molecules with end groups.

Following the above free energy of the process
AG can be written as

AG = AG, + AG,, + AAG,, + AG, + AG, + AAG,,

Because components relating to local interac-
tions weakly depend on chain length, it can be
aggregated in one item AG,: AG, = AG, + AG,
+ AG,,

Because other components of free energy have
entropy character, the dependence of degradation
on chain length is of entropy character also.
Therefore, enthalpy of the process does not de-
pend on molecular weight of initial chain. When
two equal molecules are formed from one,! free
energy of ideal mixing is equal to

AG,; = —RT[1/2x}x; In(xo/x1) + In(1 + x5)
— x4 In 2].
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1 «“r»

Here, the symbo refers to mol parts of sol-
vent (x;) and chain (x,) molecules in the final
state.

Note that the above equation is derived assum-
ing total concentration of chain and solvent mol-
ecules no more than 1 mol/L. Therefore, the nu-
merical solution will require normalization to ac-
tual concentrations.

If initial concentration of chain molecules re-
mains unchanged and breakdown of each mole-
cule results in formation of a constant number of
new molecules, this component of free energy is
constant, i.e., it does not depend on molecular
weight.

Extra free energy of mixing of molecules of
different sizes® follows the equation

AAG,; = —RT[1/2xx; In r + In(1 + x;) — x5 In 2]

where r is the number of places occupied by the
chain molecule in the quasi-crystal cell assuming
that one solvent molecule occupies one place in
this cell. The above equation is obtained using the
Flory-Huggins assumption.'®* It was assumed
that the number of places in the quasi-crystal cell,
in which the chain molecule is occupied is equal to
r/2. Additional contacts of solvent with chain
ends are neglected. The first approximation of r
dependence on molecular weight of initial chain
values is linear. The accuracy of this linear ap-
proximation increases with an increase of molec-
ular weight. Therefore, AG,, is the flat function of
the chain length, which has a limit (Fig. 5).

To estimate AG, one should find RJ2 values at
final (j = f) and initial (j = i) states. Then using
the ratio R?/RZ, the entropy of the bend can be
found. The dependence of AG, on chain length

AASb

n

Figure 5 Dependence of free energy AAG,;, of mixing
of molecules of different sizes (chain and solvent) on the
chain length n.

ASb

n

Figure 6 Dependence of free energy of the chain bend
in solution AS, on the chain length n.

approaches a limit as is shown in Figure 6, be-
cause solution is uneasily formed at certain chain
lengths. An increase of degradation rate due to
the sharp increase of thermodynamic instability
of the initial chains is similar to polymer decom-
position in the condensed phase.'® Degradation,
which takes several places, is out of current con-
sideration.

Therefore, the dependence of degradation on
molecular weight links to a variation of the en-
tropy of mixing of the molecules of different sizes.

Because AAG, and AG, are flat functions hav-
ing a limit, the rate constant is a flat function of
the chain length, and it has a limit that is justi-
fied experimentally.

Note that the parameter f required to solve the
kinetic problem can be found from

f: (Gb - Ga)/k2 = AC:"chem/ z

where AG ..., is the free energy of varying parti-
cles (molecules).

Because we consider the breakdown of chains
of a specific size, the partial derivative 0G/oC can
be substituted by a finite difference AG/AC, and
AG can be represented as a sum of two items

AG = AGgem + AG,

where AG, is the free energy of the system
throughout the process.

Hence, the rate constant, which is observed in
the cooperative system, can be characterized as
the production of the rate constant of the process
considered in terms of formal kinetics and func-
tion of the system as a whole.
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In a general case following from the thermody-
namics, the partial derivative of thermodynamic
potential in respect to concentration can be the
function of concentration (chemical potential w).
For this reason, the second-order differential
equation should be considered for proper solution.
The solution of such equations is described in
details in the handbooks on mathematics (see
refs. 16 and 17 for examples):

t+qy= iJ dC/2Jf(C)dC+q1

where f = uC/f, g, and g, are constants of inte-
gration.

Therefore, using both approaches we obtain
the same result: the dependence rate constant of
degradation (chain breakdown) is a flat function
of molecular weight having a limit. We presume
that consideration of the process in terms of co-
operative kinetics is more correct because it takes
into account all changes in the system. Following
this method, the rate constant depends on concen-
tration of initial molecules due to the dependence
of AAG;,; on concentration. However, consideration
of this dependence is beyond the current article.
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